arXiv Analytics

Sign in

arXiv:0807.2981 [math.FA]AbstractReferencesReviewsResources

The Littlewood--Paley--Rubio de Francia property of a Banach space for the case of equal intervals

T. P. Hytönen, J. L. Torrea, D. V. Yakubovich

Published 2008-07-18Version 1

Let $X$ be a Banach space. It is proved that an analogue of the Rubio de Francia square function estimate for partial sums of the Fourier series of $X$-valued functions holds true for all disjoint collections of subintervals of the set of integers of equal length and for all exponents $p$ greater or equal than 2 if and only if the space $X$ is a UMD space of type 2. The same criterion is obtained for the case of subintervals of the real line and Fourier integrals instead of Fourier series.

Comments: To appear in The Royal Society of Edinburgh Proc. A (Mathematics)
Journal: Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 4, 819-832
Categories: math.FA
Subjects: 42Bxx, 46B20
Related articles: Most relevant | Search more
arXiv:math/0002219 [math.FA] (Published 2000-02-25)
Trees and Branches in Banach Spaces
arXiv:math/0112273 [math.FA] (Published 2001-12-25)
The Banach space S is complementably minimal and subsequentially prime
arXiv:math/0206112 [math.FA] (Published 2002-06-11)
On factorization of operators between Banach spaces