{ "id": "0807.2981", "version": "v1", "published": "2008-07-18T14:33:24.000Z", "updated": "2008-07-18T14:33:24.000Z", "title": "The Littlewood--Paley--Rubio de Francia property of a Banach space for the case of equal intervals", "authors": [ "T. P. Hytönen", "J. L. Torrea", "D. V. Yakubovich" ], "comment": "To appear in The Royal Society of Edinburgh Proc. A (Mathematics)", "journal": "Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 4, 819-832", "categories": [ "math.FA" ], "abstract": "Let $X$ be a Banach space. It is proved that an analogue of the Rubio de Francia square function estimate for partial sums of the Fourier series of $X$-valued functions holds true for all disjoint collections of subintervals of the set of integers of equal length and for all exponents $p$ greater or equal than 2 if and only if the space $X$ is a UMD space of type 2. The same criterion is obtained for the case of subintervals of the real line and Fourier integrals instead of Fourier series.", "revisions": [ { "version": "v1", "updated": "2008-07-18T14:33:24.000Z" } ], "analyses": { "subjects": [ "42Bxx", "46B20" ], "keywords": [ "banach space", "equal intervals", "francia property", "littlewood-paley-rubio", "fourier series" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.2981H" } } }