arXiv:math/0605547 [math.AP]AbstractReferencesReviewsResources
Sharp well-posedness for Kadomtsev-Petviashvili-Burgers (KPBII) equation in $R^2$
Published 2006-05-19, updated 2006-05-22Version 2
We prove global well-posedness for the Cauchy problem associated with the Kadomotsev-Petviashvili-Burgers equation (KPBII) in $\mathbb R^2$ when the initial value belongs to the anisotropic Sobolev space $H^{s_1,s_2}(\mathbb R^2)$ for all $s_1>-\frac12$ and $s_2\geq0$. On the other hand, we prove in some sense that our result is sharp.
Comments: 31 pages
Keywords: sharp well-posedness, kadomtsev-petviashvili-burgers, initial value belongs, anisotropic sobolev space, global well-posedness
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/0101261 [math.AP] (Published 2001-01-31)
Global well-posedness for KdV in Sobolev Spaces of negative index
arXiv:0707.2722 [math.AP] (Published 2007-07-18)
A remark on global well-posedness below L^2 for the gKdV-3 equation
arXiv:0905.0039 [math.AP] (Published 2009-05-01)
On the local regularity of the KP-I equation in anisotropic Sobolev space