arXiv Analytics

Sign in

arXiv:0905.0039 [math.AP]AbstractReferencesReviewsResources

On the local regularity of the KP-I equation in anisotropic Sobolev space

Zihua Guo, Lizhong Peng, Baoxiang Wang

Published 2009-05-01Version 1

We prove that the KP-I initial-value problem \begin{eqnarray*} \begin{cases} \partial_tu+\partial_x^3u-\partial_x^{-1}\partial_y^2u+\partial_x(u^2/2)=0 {on}{\R}^2_{x,y}\times {\R}_t; u(x,y,0)=\phi(x,y), \end{cases} \end{eqnarray*} is locally well-posed in the space \begin{eqnarray*} H^{1,0}(\R^2)=\{\phi\in L^2(\R^2): \ \norm{\phi}_{H^{1,0}(\R^2)}\approx\norm{\phi}_{L^2}+\norm{\partial_x\phi}_{L^2}<\infty\}. \end{eqnarray*}

Comments: 23 pages, 0 figures, submitted
Categories: math.AP, math-ph, math.MP
Related articles: Most relevant | Search more
arXiv:2309.01048 [math.AP] (Published 2023-09-03)
Uniqueness of lump solutions of KP-I equation
arXiv:0708.2102 [math.AP] (Published 2007-08-15)
Gain of Regularity for the KP-I Equation
arXiv:2110.07162 [math.AP] (Published 2021-10-14, updated 2022-04-15)
Local regularity near boundary for the Stokes and Navier-Stokes equations