{ "id": "0905.0039", "version": "v1", "published": "2009-05-01T02:58:32.000Z", "updated": "2009-05-01T02:58:32.000Z", "title": "On the local regularity of the KP-I equation in anisotropic Sobolev space", "authors": [ "Zihua Guo", "Lizhong Peng", "Baoxiang Wang" ], "comment": "23 pages, 0 figures, submitted", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove that the KP-I initial-value problem \\begin{eqnarray*} \\begin{cases} \\partial_tu+\\partial_x^3u-\\partial_x^{-1}\\partial_y^2u+\\partial_x(u^2/2)=0 {on}{\\R}^2_{x,y}\\times {\\R}_t; u(x,y,0)=\\phi(x,y), \\end{cases} \\end{eqnarray*} is locally well-posed in the space \\begin{eqnarray*} H^{1,0}(\\R^2)=\\{\\phi\\in L^2(\\R^2): \\ \\norm{\\phi}_{H^{1,0}(\\R^2)}\\approx\\norm{\\phi}_{L^2}+\\norm{\\partial_x\\phi}_{L^2}<\\infty\\}. \\end{eqnarray*}", "revisions": [ { "version": "v1", "updated": "2009-05-01T02:58:32.000Z" } ], "analyses": { "keywords": [ "anisotropic sobolev space", "kp-i equation", "local regularity", "kp-i initial-value problem" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }