arXiv Analytics

Sign in

arXiv:math/0101261 [math.AP]AbstractReferencesReviewsResources

Global well-posedness for KdV in Sobolev Spaces of negative index

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao

Published 2001-01-31Version 1

The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in H^s({\mathbb{R}), -3/10<s.

Comments: 5 pages. Electronic Journal of Differential equations (submitted)
Categories: math.AP
Subjects: 35Q53, 42B35, 37K10
Related articles: Most relevant | Search more
arXiv:0707.2722 [math.AP] (Published 2007-07-18)
A remark on global well-posedness below L^2 for the gKdV-3 equation
arXiv:0809.1164 [math.AP] (Published 2008-09-06)
Global Well-posedness of the 1D Dirac-Klein-Gordon system in Sobolev spaces of negative index
arXiv:1206.1457 [math.AP] (Published 2012-06-07, updated 2012-06-09)
Global well-posedness and stability of electro-kinetic flows