arXiv Analytics

Sign in

arXiv:math/0601026 [math.NT]AbstractReferencesReviewsResources

A remark on Zoloterav's theorem

Hao Pan

Published 2006-01-02Version 1

Let n>=3 be an odd integer. For any integer a prime to n, define the permutation gamma_{a,n} of {1,...,(n-1)/2} by gamma_{a,n}(x)=n-\dec{ax}_n if {ax}_n>=(n+1)/2, and {ax}_n if {ax}_n<=(n-1)/2, where {x}_n denotes the least nonnegative residue of x modulo n. In this note, we show that the sign of gamma_{a,n} coincides with the Jacobi symbol (a/n) if n=1 mod 4, and 1 if n=3 mod 4.

Comments: 8 pages
Categories: math.NT
Subjects: 11A07, 11A15
Related articles: Most relevant | Search more
arXiv:2111.14477 [math.NT] (Published 2021-11-29, updated 2022-12-01)
Zero-sum constants related to the Jacobi symbol
arXiv:2103.09064 [math.NT] (Published 2021-03-16)
Connecting two types of representations of a permutation of $\F_q$
arXiv:2107.08984 [math.NT] (Published 2021-07-19)
A new theorem on quadratic residues modulo primes