arXiv Analytics

Sign in

arXiv:2107.08984 [math.NT]AbstractReferencesReviewsResources

A new theorem on quadratic residues modulo primes

Qing-Hu Hou, Hao Pan, Zhi-Wei Sun

Published 2021-07-19Version 1

Let $p>3$ be a prime, and let $(\frac{\cdot}p)$ be the Legendre symbol. Let $b\in\mathbb Z$ and $\varepsilon\in\{\pm 1\}$. We mainly prove that $$\left|\left\{N_p(a,b):\ 1<a<p\ \text{and}\ \left(\frac ap\right)=\varepsilon\right\}\right|=\frac{3-(\frac{-1}p)}2,$$ where $N_p(a,b)$ is the number of positive integers $x<p/2$ with $\{x^2+b\}_p>\{ax^2+b\}_p$, and $\{m\}_p$ with $m\in\mathbb{Z}$ is the least nonnegative residue of $m$ modulo $p$.

Related articles: Most relevant | Search more
arXiv:2401.14301 [math.NT] (Published 2024-01-25)
Some determinants involving quadratic residues modulo primes
arXiv:2008.10502 [math.NT] (Published 2020-08-24)
Legendre Symbol of $\prod f(i,j) $ over $ 0<i<j<p/2, \ p\nmid f(i,j) $
arXiv:2409.08213 [math.NT] (Published 2024-09-12)
On determinants involving $(\frac{j+k}p)\pm(\frac{j-k}p)$