{ "id": "2107.08984", "version": "v1", "published": "2021-07-19T15:58:31.000Z", "updated": "2021-07-19T15:58:31.000Z", "title": "A new theorem on quadratic residues modulo primes", "authors": [ "Qing-Hu Hou", "Hao Pan", "Zhi-Wei Sun" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "Let $p>3$ be a prime, and let $(\\frac{\\cdot}p)$ be the Legendre symbol. Let $b\\in\\mathbb Z$ and $\\varepsilon\\in\\{\\pm 1\\}$. We mainly prove that $$\\left|\\left\\{N_p(a,b):\\ 1\\{ax^2+b\\}_p$, and $\\{m\\}_p$ with $m\\in\\mathbb{Z}$ is the least nonnegative residue of $m$ modulo $p$.", "revisions": [ { "version": "v1", "updated": "2021-07-19T15:58:31.000Z" } ], "analyses": { "subjects": [ "11A15", "11A07" ], "keywords": [ "quadratic residues modulo primes", "legendre symbol", "positive integers", "nonnegative residue" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }