{ "id": "math/0601026", "version": "v1", "published": "2006-01-02T16:25:00.000Z", "updated": "2006-01-02T16:25:00.000Z", "title": "A remark on Zoloterav's theorem", "authors": [ "Hao Pan" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "Let n>=3 be an odd integer. For any integer a prime to n, define the permutation gamma_{a,n} of {1,...,(n-1)/2} by gamma_{a,n}(x)=n-\\dec{ax}_n if {ax}_n>=(n+1)/2, and {ax}_n if {ax}_n<=(n-1)/2, where {x}_n denotes the least nonnegative residue of x modulo n. In this note, we show that the sign of gamma_{a,n} coincides with the Jacobi symbol (a/n) if n=1 mod 4, and 1 if n=3 mod 4.", "revisions": [ { "version": "v1", "updated": "2006-01-02T16:25:00.000Z" } ], "analyses": { "subjects": [ "11A07", "11A15" ], "keywords": [ "zoloteravs theorem", "jacobi symbol", "odd integer", "permutation", "nonnegative residue" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1026P" } } }