arXiv:math/0504301 [math.RT]AbstractReferencesReviewsResources
The Auslander-Reiten Translation in Submodule Categories
Claus Michael Ringel, Markus Schmidmeier
Published 2005-04-14, updated 2005-09-30Version 2
Let $\Lambda$ be an artin algebra and $S(\Lambda)$ the category of all embeddings $(A\subseteq B)$ where $B$ is a finitely generated $\Lambda$-module and $A$ is a submodule of $B$. Then $S(\Lambda)$ is an exact Krull-Schmidt category which has Auslander-Reiten sequences. In this manuscript we show that the Auslander-Reiten translation in $S(\Lambda)$ can be computed within the category of $\Lambda$-modules by using our construction of minimal monomorphisms. If in addition $\Lambda$ is uniserial then any nonprojective indecomposable object in $\Cal S(\Lambda)$ is invariant under the sixth power of the Auslander-Reiten translation.