arXiv Analytics

Sign in

arXiv:math/0504301 [math.RT]AbstractReferencesReviewsResources

The Auslander-Reiten Translation in Submodule Categories

Claus Michael Ringel, Markus Schmidmeier

Published 2005-04-14, updated 2005-09-30Version 2

Let $\Lambda$ be an artin algebra and $S(\Lambda)$ the category of all embeddings $(A\subseteq B)$ where $B$ is a finitely generated $\Lambda$-module and $A$ is a submodule of $B$. Then $S(\Lambda)$ is an exact Krull-Schmidt category which has Auslander-Reiten sequences. In this manuscript we show that the Auslander-Reiten translation in $S(\Lambda)$ can be computed within the category of $\Lambda$-modules by using our construction of minimal monomorphisms. If in addition $\Lambda$ is uniserial then any nonprojective indecomposable object in $\Cal S(\Lambda)$ is invariant under the sixth power of the Auslander-Reiten translation.

Related articles: Most relevant | Search more
arXiv:2408.01359 [math.RT] (Published 2024-08-02)
Auslander-Reiten translations in the monomorphism categories of exact categories
arXiv:1101.4113 [math.RT] (Published 2011-01-21)
Auslander-Reiten translations in monomorphism categories
arXiv:0810.4757 [math.RT] (Published 2008-10-27)
Almost $\cal D$-split sequences and derived equivalences