arXiv Analytics

Sign in

arXiv:2408.01359 [math.RT]AbstractReferencesReviewsResources

Auslander-Reiten translations in the monomorphism categories of exact categories

Xiu-Hua Luo, Shijie Zhu

Published 2024-08-02Version 1

Let $\Lambda$ be a finite dimensional algebra. Let $\mathcal C$ be a functorially finite exact subcategory of $\Lambda$-mod with enough projective and injective objects and $\mathcal S (\mathcal C)$ be its monomorphism category. It turns out that the category $\mathcal S (\mathcal C)$ has almost split sequences. We show an explicit formula for the Auslander-Reiten translation in $\mathcal S (\mathcal C)$. Furthermore, if $\mathcal C$ is a stably $d$-Calabi-Yau Frobenius category, we calculate objects under powers of Auslander-Reiten translation in the triangulated category $\overline{\mathcal S(\mathcal C)}$.

Related articles: Most relevant | Search more
arXiv:math/0504301 [math.RT] (Published 2005-04-14, updated 2005-09-30)
The Auslander-Reiten Translation in Submodule Categories
arXiv:2407.17147 [math.RT] (Published 2024-07-24)
An introduction to monomorphism categories
arXiv:1907.04657 [math.RT] (Published 2019-07-10)
A functorial approach to monomorphism categories for species I