{ "id": "2408.01359", "version": "v1", "published": "2024-08-02T16:10:07.000Z", "updated": "2024-08-02T16:10:07.000Z", "title": "Auslander-Reiten translations in the monomorphism categories of exact categories", "authors": [ "Xiu-Hua Luo", "Shijie Zhu" ], "comment": "26 pages", "categories": [ "math.RT", "math.CT" ], "abstract": "Let $\\Lambda$ be a finite dimensional algebra. Let $\\mathcal C$ be a functorially finite exact subcategory of $\\Lambda$-mod with enough projective and injective objects and $\\mathcal S (\\mathcal C)$ be its monomorphism category. It turns out that the category $\\mathcal S (\\mathcal C)$ has almost split sequences. We show an explicit formula for the Auslander-Reiten translation in $\\mathcal S (\\mathcal C)$. Furthermore, if $\\mathcal C$ is a stably $d$-Calabi-Yau Frobenius category, we calculate objects under powers of Auslander-Reiten translation in the triangulated category $\\overline{\\mathcal S(\\mathcal C)}$.", "revisions": [ { "version": "v1", "updated": "2024-08-02T16:10:07.000Z" } ], "analyses": { "subjects": [ "16G70", "18A20", "18A25", "16B50" ], "keywords": [ "auslander-reiten translation", "monomorphism category", "exact categories", "functorially finite exact subcategory", "calabi-yau frobenius category" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }