{ "id": "math/0504301", "version": "v2", "published": "2005-04-14T17:54:52.000Z", "updated": "2005-09-30T11:15:59.000Z", "title": "The Auslander-Reiten Translation in Submodule Categories", "authors": [ "Claus Michael Ringel", "Markus Schmidmeier" ], "comment": "Dedicated to Idun Reiten", "categories": [ "math.RT", "math.CT" ], "abstract": "Let $\\Lambda$ be an artin algebra and $S(\\Lambda)$ the category of all embeddings $(A\\subseteq B)$ where $B$ is a finitely generated $\\Lambda$-module and $A$ is a submodule of $B$. Then $S(\\Lambda)$ is an exact Krull-Schmidt category which has Auslander-Reiten sequences. In this manuscript we show that the Auslander-Reiten translation in $S(\\Lambda)$ can be computed within the category of $\\Lambda$-modules by using our construction of minimal monomorphisms. If in addition $\\Lambda$ is uniserial then any nonprojective indecomposable object in $\\Cal S(\\Lambda)$ is invariant under the sixth power of the Auslander-Reiten translation.", "revisions": [ { "version": "v2", "updated": "2005-09-30T11:15:59.000Z" } ], "analyses": { "subjects": [ "16G70", "18E30" ], "keywords": [ "auslander-reiten translation", "submodule categories", "exact krull-schmidt category", "minimal monomorphisms", "auslander-reiten sequences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......4301R" } } }