arXiv Analytics

Sign in

arXiv:math/0501441 [math.CO]AbstractReferencesReviewsResources

A q-Analogue of Faulhaber's Formula for Sums of Powers

Victor J. W. Guo, Jiang Zeng

Published 2005-01-25, updated 2005-08-31Version 3

Let $$ S_{m,n}(q):=\sum_{k=1}^{n}\frac{1-q^{2k}}{1-q^2} (\frac{1-q^k}{1-q})^{m-1}q^{\frac{m+1}{2}(n-k)}. $$ Generalizing the formulas of Warnaar and Schlosser, we prove that there exist polynomials $P_{m,k}(q)\in\mathbb{Z}[q]$ such that $$ S_{2m+1,n}(q) =\sum_{k=0}^{m}(-1)^kP_{m,k}(q) \frac{(1-q^n)^{m+1-k}(1-q^{n+1})^{m+1-k}q^{kn}} {(1-q^2)(1-q)^{2m-3k}\prod_{i=0}^{k}(1-q^{m+1-i})}, $$ and solve a problem raised by Schlosser. We also show that there is a similar formula for the following $q$-analogue of alternating sums of powers: $$ T_{m,n}(q):=\sum_{k=1}^{n}(-1)^{n-k} (\frac{1-q^k}{1-q})^{m}q^{\frac{m}{2}(n-k)}. $$

Comments: 19 pages
Journal: Electron. J. Combin. 11(2) (2005), #R19
Categories: math.CO
Subjects: 05A30, 05A15
Related articles: Most relevant | Search more
arXiv:math/9910070 [math.CO] (Published 1999-10-14)
A q-analogue of the path length of binary search trees
arXiv:2402.11979 [math.CO] (Published 2024-02-19, updated 2025-01-29)
On a q-analogue of the Zeta polynomial of posets
arXiv:math/9907029 [math.CO] (Published 1999-07-06)
A q-analogue of a formula of Hernandez obtained by inverting a result of Dilcher