{ "id": "math/0501441", "version": "v3", "published": "2005-01-25T12:02:28.000Z", "updated": "2005-08-31T09:38:57.000Z", "title": "A q-Analogue of Faulhaber's Formula for Sums of Powers", "authors": [ "Victor J. W. Guo", "Jiang Zeng" ], "comment": "19 pages", "journal": "Electron. J. Combin. 11(2) (2005), #R19", "categories": [ "math.CO" ], "abstract": "Let $$ S_{m,n}(q):=\\sum_{k=1}^{n}\\frac{1-q^{2k}}{1-q^2} (\\frac{1-q^k}{1-q})^{m-1}q^{\\frac{m+1}{2}(n-k)}. $$ Generalizing the formulas of Warnaar and Schlosser, we prove that there exist polynomials $P_{m,k}(q)\\in\\mathbb{Z}[q]$ such that $$ S_{2m+1,n}(q) =\\sum_{k=0}^{m}(-1)^kP_{m,k}(q) \\frac{(1-q^n)^{m+1-k}(1-q^{n+1})^{m+1-k}q^{kn}} {(1-q^2)(1-q)^{2m-3k}\\prod_{i=0}^{k}(1-q^{m+1-i})}, $$ and solve a problem raised by Schlosser. We also show that there is a similar formula for the following $q$-analogue of alternating sums of powers: $$ T_{m,n}(q):=\\sum_{k=1}^{n}(-1)^{n-k} (\\frac{1-q^k}{1-q})^{m}q^{\\frac{m}{2}(n-k)}. $$", "revisions": [ { "version": "v3", "updated": "2005-08-31T09:38:57.000Z" } ], "analyses": { "subjects": [ "05A30", "05A15" ], "keywords": [ "faulhabers formula", "q-analogue", "similar formula" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......1441G" } } }