arXiv Analytics

Sign in

arXiv:math/0409225 [math.PR]AbstractReferencesReviewsResources

On Long Range Percolation with Heavy Tails

S. Friedli, N. B. N. de Lima, V. Sidoravicius

Published 2004-09-14Version 1

Consider independent long range percolation on $\mathbf{Z}^2$, where horizontal and vertical edges of length $n$ are open with probability $p_n$. We show that if $\limsup_{n\to\infty}p_n>0,$ then there exists an integer $N$ such that $P_N(0\leftrightarrow \infty)>0$, where $P_N$ is the truncated measure obtained by taking $p_{N,n}=p_n$ for $n \leq N$ and $p_{N,n}=0$ for all $n> N$.

Related articles: Most relevant | Search more
arXiv:math/0405090 [math.PR] (Published 2004-05-05, updated 2005-06-14)
Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails
arXiv:1509.02214 [math.PR] (Published 2015-09-07)
Intermittency for branching walks with heavy tails
arXiv:0705.1347 [math.PR] (Published 2007-05-09)
Slow Convergence in Bootstrap Percolation