{ "id": "math/0409225", "version": "v1", "published": "2004-09-14T13:17:21.000Z", "updated": "2004-09-14T13:17:21.000Z", "title": "On Long Range Percolation with Heavy Tails", "authors": [ "S. Friedli", "N. B. N. de Lima", "V. Sidoravicius" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Consider independent long range percolation on $\\mathbf{Z}^2$, where horizontal and vertical edges of length $n$ are open with probability $p_n$. We show that if $\\limsup_{n\\to\\infty}p_n>0,$ then there exists an integer $N$ such that $P_N(0\\leftrightarrow \\infty)>0$, where $P_N$ is the truncated measure obtained by taking $p_{N,n}=p_n$ for $n \\leq N$ and $p_{N,n}=0$ for all $n> N$.", "revisions": [ { "version": "v1", "updated": "2004-09-14T13:17:21.000Z" } ], "analyses": { "subjects": [ "60K35", "82B44" ], "keywords": [ "heavy tails", "independent long range percolation", "horizontal", "vertical edges", "probability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9225F" } } }