arXiv:0705.1347 [math.PR]AbstractReferencesReviewsResources
Slow Convergence in Bootstrap Percolation
Janko Gravner, Alexander E. Holroyd
Published 2007-05-09Version 1
In the bootstrap percolation model, sites in an L by L square are initially infected independently with probability p. At subsequent steps, a healthy site becomes infected if it has at least 2 infected neighbours. As (L,p)->(infinity,0), the probability that the entire square is eventually infected is known to undergo a phase transition in the parameter p log L, occurring asymptotically at lambda = pi^2/18. We prove that the discrepancy between the critical parameter and its limit lambda is at least Omega((log L)^(-1/2)). In contrast, the critical window has width only Theta((log L)^(-1)). For the so-called modified model, we prove rigorous explicit bounds which imply for example that the relative discrepancy is at least 1% even when L = 10^3000. Our results shed some light on the observed differences between simulations and rigorous asymptotics.