arXiv:math/0304425 [math.NT]AbstractReferencesReviewsResources
Modular congruences, Q-curves, and the diophantine equation x^4 + y^4 = z^p
Published 2003-04-27Version 1
We prove two results concerning the generalized Fermat equation $x^4+y^4=z^p$. In particular we prove that the First Case is true if $p \neq 7$.
Related articles: Most relevant | Search more
arXiv:1201.0730 [math.NT] (Published 2012-01-03)
On the Diophantine equation x^2+2^a.3^b.11^c=y^n
arXiv:1709.00400 [math.NT] (Published 2017-09-01)
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}=y^n$
arXiv:1112.5984 [math.NT] (Published 2011-12-27)
A p-adic look at the Diophantine equation x^{2}+11^{2k}=y^{n}