arXiv:1112.5984 [math.NT]AbstractReferencesReviewsResources
A p-adic look at the Diophantine equation x^{2}+11^{2k}=y^{n}
Ismail Naci Cangul, Gokhan Soydan, Yilmaz Simsek
Published 2011-12-27Version 1
We find all solutions of Diophantine equation x^{2}+11^{2k} = y^{n} where x>=1, y>=1, n>=3 and k is natural number. We give p-adic interpretation of this equation.
Comments: 4 pages
Journal: Numerical Analysis And Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, 2009 Vol.1, pp. 275-277
DOI: 10.1063/1.3241447
Categories: math.NT
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1201.0730 [math.NT] (Published 2012-01-03)
On the Diophantine equation x^2+2^a.3^b.11^c=y^n
arXiv:1709.00400 [math.NT] (Published 2017-09-01)
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}=y^n$
On the Diophantine equation N X^2 + 2^L 3^M = Y^N