{ "id": "math/0304425", "version": "v1", "published": "2003-04-27T22:09:59.000Z", "updated": "2003-04-27T22:09:59.000Z", "title": "Modular congruences, Q-curves, and the diophantine equation x^4 + y^4 = z^p", "authors": [ "Luis Dieulefait" ], "categories": [ "math.NT", "math.AG" ], "abstract": "We prove two results concerning the generalized Fermat equation $x^4+y^4=z^p$. In particular we prove that the First Case is true if $p \\neq 7$.", "revisions": [ { "version": "v1", "updated": "2003-04-27T22:09:59.000Z" } ], "analyses": { "subjects": [ "11D41", "11F11" ], "keywords": [ "diophantine equation", "modular congruences", "generalized fermat equation", "first case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......4425D" } } }