arXiv Analytics

Sign in

arXiv:math/0303146 [math.RT]AbstractReferencesReviewsResources

Formulas for the dimensions of some affine Deligne-Lusztig Varieties

Daniel C. Reuman

Published 2003-03-12Version 1

Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties $X_{\tilde{w}}^P(b\sigma)$ of a quasisplit connected reductive group $G$ over $F = \mathbb{F}_q((t))$ for a parahoric subgroup $P$. They asked which pairs $(b, \tilde{w})$ give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for $P=I$ an Iwahori subgroup, in the cases $b=1$, $G=SL_2$, $SL_3$, $Sp_4$. This information is used to get a formula for the dimensions of the $X_{\tilde{w}}^K(\sigma)$ (all shown to be non-empty by Rapoport and Kottwitz) for the above $G$ that supports a general conjecture of Rapoport. Here $K$ is a special maximal compact subgroup.

Comments: 16 pages, 10 figures
Journal: Michigan Math. J. 52 (2004), 435-451
Categories: math.RT
Subjects: 20G25
Related articles: Most relevant | Search more
arXiv:2306.06873 [math.RT] (Published 2023-06-12)
Affine Deligne-Lusztig varieties via the double Bruhat graph II: Iwahori-Hecke algebra
arXiv:1006.2291 [math.RT] (Published 2010-06-11)
Dimensions of affine Deligne-Lusztig varieties in affine flag varieties
arXiv:1003.0238 [math.RT] (Published 2010-03-01)
Closure of Steinberg fibers and affine Deligne-Lusztig varieties