{ "id": "math/0303146", "version": "v1", "published": "2003-03-12T16:27:30.000Z", "updated": "2003-03-12T16:27:30.000Z", "title": "Formulas for the dimensions of some affine Deligne-Lusztig Varieties", "authors": [ "Daniel C. Reuman" ], "comment": "16 pages, 10 figures", "journal": "Michigan Math. J. 52 (2004), 435-451", "categories": [ "math.RT" ], "abstract": "Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties $X_{\\tilde{w}}^P(b\\sigma)$ of a quasisplit connected reductive group $G$ over $F = \\mathbb{F}_q((t))$ for a parahoric subgroup $P$. They asked which pairs $(b, \\tilde{w})$ give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for $P=I$ an Iwahori subgroup, in the cases $b=1$, $G=SL_2$, $SL_3$, $Sp_4$. This information is used to get a formula for the dimensions of the $X_{\\tilde{w}}^K(\\sigma)$ (all shown to be non-empty by Rapoport and Kottwitz) for the above $G$ that supports a general conjecture of Rapoport. Here $K$ is a special maximal compact subgroup.", "revisions": [ { "version": "v1", "updated": "2003-03-12T16:27:30.000Z" } ], "analyses": { "subjects": [ "20G25" ], "keywords": [ "affine deligne-lusztig varieties", "dimensions", "special maximal compact subgroup", "parahoric subgroup", "quasisplit connected reductive group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003math......3146R" } } }