arXiv:1006.2291 [math.RT]AbstractReferencesReviewsResources
Dimensions of affine Deligne-Lusztig varieties in affine flag varieties
Published 2010-06-11Version 1
Affine Deligne-Lusztig varieties are analogs of Deligne-Lusztig varieties in the context of an affine root system. We prove a conjecture stated in the paper arXiv:0805.0045v4 by Haines, Kottwitz, Reuman, and the first named author, about the question which affine Deligne-Lusztig varieties (for a split group and a basic $\sigma$-conjugacy class) in the Iwahori case are non-empty. If the underlying algebraic group is a classical group and the chosen basic $\sigma$-conjugacy class is the class of $b=1$, we also prove the dimension formula predicted in op. cit. in almost all cases.
Comments: 22 pages
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2306.06873 [math.RT] (Published 2023-06-12)
Affine Deligne-Lusztig varieties via the double Bruhat graph II: Iwahori-Hecke algebra
arXiv:math/0303146 [math.RT] (Published 2003-03-12)
Formulas for the dimensions of some affine Deligne-Lusztig Varieties
arXiv:1110.1689 [math.RT] (Published 2011-10-08)
Notes on partial conjugation