{ "id": "1006.2291", "version": "v1", "published": "2010-06-11T13:15:09.000Z", "updated": "2010-06-11T13:15:09.000Z", "title": "Dimensions of affine Deligne-Lusztig varieties in affine flag varieties", "authors": [ "Ulrich Goertz", "Xuhua He" ], "comment": "22 pages", "categories": [ "math.RT" ], "abstract": "Affine Deligne-Lusztig varieties are analogs of Deligne-Lusztig varieties in the context of an affine root system. We prove a conjecture stated in the paper arXiv:0805.0045v4 by Haines, Kottwitz, Reuman, and the first named author, about the question which affine Deligne-Lusztig varieties (for a split group and a basic $\\sigma$-conjugacy class) in the Iwahori case are non-empty. If the underlying algebraic group is a classical group and the chosen basic $\\sigma$-conjugacy class is the class of $b=1$, we also prove the dimension formula predicted in op. cit. in almost all cases.", "revisions": [ { "version": "v1", "updated": "2010-06-11T13:15:09.000Z" } ], "analyses": { "subjects": [ "20F55", "20G25" ], "keywords": [ "affine deligne-lusztig varieties", "affine flag varieties", "conjugacy class", "affine root system", "dimension formula" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.2291G" } } }