arXiv:math/0201144 [math.FA]AbstractReferencesReviewsResources
Lipschitz spaces and M-ideals
Published 2002-01-16Version 1
For a metric space $(K,d)$ the Banach space $\Lip(K)$ consists of all scalar-valued bounded Lipschitz functions on $K$ with the norm $\|f\|_{L}=\max(\|f\|_{\infty},L(f))$, where $L(f)$ is the Lipschitz constant of $f$. The closed subspace $\lip(K)$ of $\Lip(K)$ contains all elements of $\Lip(K)$ satisfying the $\lip$-condition $\lim_{0<d(x,y)\to 0}|f(x)-f(y)|/d(x,y)=0$. For $K=([0,1],| {\cdot} |^{\alpha})$, $0<\alpha<1$, we prove that $\lip(K)$ is a proper $M$-ideal in a certain subspace of $\Lip(K)$ containing a copy of $\ell^{\infty}$.
Comments: Includes 4 figures
Journal: Extracta Math. 18, no.1, 33-56 (2003)
Categories: math.FA
Keywords: lipschitz spaces, metric space, lipschitz constant, banach space, scalar-valued bounded lipschitz functions
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0807.2981 [math.FA] (Published 2008-07-18)
The Littlewood--Paley--Rubio de Francia property of a Banach space for the case of equal intervals
arXiv:math/0002219 [math.FA] (Published 2000-02-25)
Trees and Branches in Banach Spaces
arXiv:math/0112273 [math.FA] (Published 2001-12-25)
The Banach space S is complementably minimal and subsequentially prime