{ "id": "math/0201144", "version": "v1", "published": "2002-01-16T14:00:18.000Z", "updated": "2002-01-16T14:00:18.000Z", "title": "Lipschitz spaces and M-ideals", "authors": [ "Heiko Berninger", "Dirk Werner" ], "comment": "Includes 4 figures", "journal": "Extracta Math. 18, no.1, 33-56 (2003)", "categories": [ "math.FA" ], "abstract": "For a metric space $(K,d)$ the Banach space $\\Lip(K)$ consists of all scalar-valued bounded Lipschitz functions on $K$ with the norm $\\|f\\|_{L}=\\max(\\|f\\|_{\\infty},L(f))$, where $L(f)$ is the Lipschitz constant of $f$. The closed subspace $\\lip(K)$ of $\\Lip(K)$ contains all elements of $\\Lip(K)$ satisfying the $\\lip$-condition $\\lim_{0