arXiv:2412.07908 [math.NT]AbstractReferencesReviewsResources
Transcendence of Hecke-Mahler Series
Florian Luca, Joel Ouaknine, James Worrell
Published 2024-12-10, updated 2024-12-17Version 2
We prove transcendence of the Hecke-Mahler series $\sum_{n=0}^\infty f(\lfloor n\theta+\alpha \rfloor) \beta^{-n}$, where $f(x) \in \mathbb{Z}[x]$ is a non-constant polynomial $\alpha$ is a real number, $\theta$ is an irrational real number, and $\beta$ is an algebraic number such that $|\beta|>1$.
Subjects: 11J87
Related articles: Most relevant | Search more
arXiv:2302.04017 [math.NT] (Published 2023-02-08)
Heights and transcendence of $p$--adic continued fractions
arXiv:2005.01211 [math.NT] (Published 2020-05-03)
Transcendence of $πr$ or $\wp(ω_1 r)$
arXiv:1807.09070 [math.NT] (Published 2018-07-24)
Remarks on the transcendence of certain infinite products