arXiv:2005.01211 [math.NT]AbstractReferencesReviewsResources
Transcendence of $πr$ or $\wp(ω_1 r)$
Published 2020-05-03Version 1
Let $\wp $ be a Weierstrass $\wp $-function with algebraic $g_2$ and $g_3$, whose fundamental periods $\omega _1, \omega _2$ satisfy ${\rm Im}(\omega _1) = 0$. We show that $\pi r$ or $\wp(\omega _1 r)$ is transcendental for any non-zero real number $r$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1807.09070 [math.NT] (Published 2018-07-24)
Remarks on the transcendence of certain infinite products
arXiv:2302.04017 [math.NT] (Published 2023-02-08)
Heights and transcendence of $p$--adic continued fractions
Transcendence of Hecke-Mahler Series