arXiv Analytics

Sign in

arXiv:2005.01211 [math.NT]AbstractReferencesReviewsResources

Transcendence of $πr$ or $\wp(ω_1 r)$

Yukitaka Abe

Published 2020-05-03Version 1

Let $\wp $ be a Weierstrass $\wp $-function with algebraic $g_2$ and $g_3$, whose fundamental periods $\omega _1, \omega _2$ satisfy ${\rm Im}(\omega _1) = 0$. We show that $\pi r$ or $\wp(\omega _1 r)$ is transcendental for any non-zero real number $r$.

Related articles: Most relevant | Search more
arXiv:1807.09070 [math.NT] (Published 2018-07-24)
Remarks on the transcendence of certain infinite products
arXiv:2302.04017 [math.NT] (Published 2023-02-08)
Heights and transcendence of $p$--adic continued fractions
arXiv:2412.07908 [math.NT] (Published 2024-12-10, updated 2024-12-17)
Transcendence of Hecke-Mahler Series