{ "id": "2005.01211", "version": "v1", "published": "2020-05-03T23:47:52.000Z", "updated": "2020-05-03T23:47:52.000Z", "title": "Transcendence of $πr$ or $\\wp(ω_1 r)$", "authors": [ "Yukitaka Abe" ], "categories": [ "math.NT" ], "abstract": "Let $\\wp $ be a Weierstrass $\\wp $-function with algebraic $g_2$ and $g_3$, whose fundamental periods $\\omega _1, \\omega _2$ satisfy ${\\rm Im}(\\omega _1) = 0$. We show that $\\pi r$ or $\\wp(\\omega _1 r)$ is transcendental for any non-zero real number $r$.", "revisions": [ { "version": "v1", "updated": "2020-05-03T23:47:52.000Z" } ], "analyses": { "keywords": [ "transcendence", "non-zero real number", "fundamental periods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }