{ "id": "2412.07908", "version": "v2", "published": "2024-12-10T20:33:45.000Z", "updated": "2024-12-17T22:18:33.000Z", "title": "Transcendence of Hecke-Mahler Series", "authors": [ "Florian Luca", "Joel Ouaknine", "James Worrell" ], "categories": [ "math.NT", "cs.FL" ], "abstract": "We prove transcendence of the Hecke-Mahler series $\\sum_{n=0}^\\infty f(\\lfloor n\\theta+\\alpha \\rfloor) \\beta^{-n}$, where $f(x) \\in \\mathbb{Z}[x]$ is a non-constant polynomial $\\alpha$ is a real number, $\\theta$ is an irrational real number, and $\\beta$ is an algebraic number such that $|\\beta|>1$.", "revisions": [ { "version": "v2", "updated": "2024-12-17T22:18:33.000Z" } ], "analyses": { "subjects": [ "11J87" ], "keywords": [ "hecke-mahler series", "transcendence", "irrational real number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }