arXiv:2408.09099 [math.FA]AbstractReferencesReviewsResources
Construction of irregular complete interpolation sets for shift-invariant spaces
Kumari Priyanka, A. Antony Selvan
Published 2024-08-17Version 1
For several shift-invariant spaces, there exists a real number $a\in\mathbb{R}$ such that the set $a+\mathbb{Z}$ is a complete interpolation set. In this paper, we characterize the complete interpolation property of the set $(a+\mathbb{N}_0)\cup(\alpha+a+\mathbb{N}^{-})$ for shift-invariant spaces using Toeplitz operators. Using this characterization, we determine all $\alpha$ for which the sample set $\mathbb{N}_0\cup\alpha+\mathbb{N}^{-}$ forms a complete interpolation set for transversal-invariant spaces. We introduce a new recurrence relation for exponential splines, examines the zeros of these splines, and explores the zero-free region of the doubly infinite Lerch zeta function. Consequently, we demonstrate that $\left\langle\frac{m}{2}\right\rangle+\mathbb{N}_0\cup\alpha+\left\langle\frac{m}{2}\right\rangle+\mathbb{N}^{-}$ is a complete interpolation set for a shift-invariant spline space of order $m\geq 2$ if and only if $|\alpha|<1/2$.