arXiv Analytics

Sign in

arXiv:2001.00005 [math.FA]AbstractReferencesReviewsResources

Approach to the construction of the spaces $ S{D^p}[\mathbb{R}^\infty]$ for $1 \leq p \leq \infty$

Hemanta Kalita, Bipan Hazarika

Published 2019-12-28Version 1

The objective of this paper is to construct separable Banach spaces $S{D^p}[\mathbb{R}^\infty]$ for $1\leq p \leq \infty$, each of which contains the $L^p[\mathbb{R}^\infty] $ spaces, as well as finitely additive measures, as compact dense embedding. Also these spaces contains Henstock-Kurzweil integrable functions.

Related articles: Most relevant | Search more
arXiv:2002.11512 [math.FA] (Published 2020-02-21)
Construction of the $ K{S^p}$ spaces on $\mathbb{R}^\infty$ and Separable Banach Spaces
arXiv:1112.5262 [math.FA] (Published 2011-12-22, updated 2012-07-18)
Nonstationary Gabor Frames - Existence and Construction
arXiv:math/0407533 [math.FA] (Published 2004-07-30)
A note on a construction of J.F. Feinstein