{ "id": "2001.00005", "version": "v1", "published": "2019-12-28T09:13:05.000Z", "updated": "2019-12-28T09:13:05.000Z", "title": "Approach to the construction of the spaces $ S{D^p}[\\mathbb{R}^\\infty]$ for $1 \\leq p \\leq \\infty$", "authors": [ "Hemanta Kalita", "Bipan Hazarika" ], "comment": "17", "categories": [ "math.FA" ], "abstract": "The objective of this paper is to construct separable Banach spaces $S{D^p}[\\mathbb{R}^\\infty]$ for $1\\leq p \\leq \\infty$, each of which contains the $L^p[\\mathbb{R}^\\infty] $ spaces, as well as finitely additive measures, as compact dense embedding. Also these spaces contains Henstock-Kurzweil integrable functions.", "revisions": [ { "version": "v1", "updated": "2019-12-28T09:13:05.000Z" } ], "analyses": { "subjects": [ "26A39", "28B05", "46B03", "46B20", "46B25", "46T12" ], "keywords": [ "construction", "spaces contains henstock-kurzweil integrable functions", "construct separable banach spaces", "compact dense embedding", "additive measures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }