arXiv Analytics

Sign in

arXiv:2002.11512 [math.FA]AbstractReferencesReviewsResources

Construction of the $ K{S^p}$ spaces on $\mathbb{R}^\infty$ and Separable Banach Spaces

Hemanta Kalita, Tepper L. Gill, Bipan Hazarika, Timothy Myers

Published 2020-02-21Version 1

The purpose of this paper is to construct a new class of separable Banach spaces $KS^p[\mathbb{R}^{\infty}], \; 1\leq p \leq \infty$. Each of these spaces contain the $ L^p[\mathbb{R}^\infty] $ spaces, as well as the space $\mfM[\mathbb{R}^\iy]$, of finitely additive measures as dense continuous compact embeddings. These spaces are of interest because they also contain the Henstock-Kurzweil integrable functions on $\mathbb{R}^\iy$. We will construct a canonical class of Kuelb-Steadman spaces $KS^p[\mathcal{B}], \; 1\leq p \leq \infty$, where $\mathcal{B}$ is separable Banach space. %and come again to $K{S^p}[\mathbb{R}^\infty].$ Finally, we offer a interesting approach to the Fourier transform on $K{S^p}[\mathbb{R}^{\infty}]$ and $KS^p[\mathcal{B}]$. % an application of $K{S^p}[\mathbb{R}^{\infty}].$ %Further we find $K{S^2}[\mathbb{R}^{\infty}] $ satisfies the requirement for Heisenberg and Schr\"{o}dinger representations.

Related articles: Most relevant | Search more
arXiv:2001.00005 [math.FA] (Published 2019-12-28)
Approach to the construction of the spaces $ S{D^p}[\mathbb{R}^\infty]$ for $1 \leq p \leq \infty$
arXiv:0803.3646 [math.FA] (Published 2008-03-25)
Characterizing Hilbert spaces using Fourier transform over the field of p-adic numbers
arXiv:math/0407533 [math.FA] (Published 2004-07-30)
A note on a construction of J.F. Feinstein