{ "id": "2002.11512", "version": "v1", "published": "2020-02-21T16:53:22.000Z", "updated": "2020-02-21T16:53:22.000Z", "title": "Construction of the $ K{S^p}$ spaces on $\\mathbb{R}^\\infty$ and Separable Banach Spaces", "authors": [ "Hemanta Kalita", "Tepper L. Gill", "Bipan Hazarika", "Timothy Myers" ], "comment": "pages 33", "categories": [ "math.FA" ], "abstract": "The purpose of this paper is to construct a new class of separable Banach spaces $KS^p[\\mathbb{R}^{\\infty}], \\; 1\\leq p \\leq \\infty$. Each of these spaces contain the $ L^p[\\mathbb{R}^\\infty] $ spaces, as well as the space $\\mfM[\\mathbb{R}^\\iy]$, of finitely additive measures as dense continuous compact embeddings. These spaces are of interest because they also contain the Henstock-Kurzweil integrable functions on $\\mathbb{R}^\\iy$. We will construct a canonical class of Kuelb-Steadman spaces $KS^p[\\mathcal{B}], \\; 1\\leq p \\leq \\infty$, where $\\mathcal{B}$ is separable Banach space. %and come again to $K{S^p}[\\mathbb{R}^\\infty].$ Finally, we offer a interesting approach to the Fourier transform on $K{S^p}[\\mathbb{R}^{\\infty}]$ and $KS^p[\\mathcal{B}]$. % an application of $K{S^p}[\\mathbb{R}^{\\infty}].$ %Further we find $K{S^2}[\\mathbb{R}^{\\infty}] $ satisfies the requirement for Heisenberg and Schr\\\"{o}dinger representations.", "revisions": [ { "version": "v1", "updated": "2020-02-21T16:53:22.000Z" } ], "analyses": { "subjects": [ "26A39", "46B03", "46B20", "46B25" ], "keywords": [ "separable banach space", "construction", "dense continuous compact embeddings", "spaces contain", "fourier transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }