{ "id": "2408.09099", "version": "v1", "published": "2024-08-17T05:00:43.000Z", "updated": "2024-08-17T05:00:43.000Z", "title": "Construction of irregular complete interpolation sets for shift-invariant spaces", "authors": [ "Kumari Priyanka", "A. Antony Selvan" ], "comment": "30 pages", "categories": [ "math.FA" ], "abstract": "For several shift-invariant spaces, there exists a real number $a\\in\\mathbb{R}$ such that the set $a+\\mathbb{Z}$ is a complete interpolation set. In this paper, we characterize the complete interpolation property of the set $(a+\\mathbb{N}_0)\\cup(\\alpha+a+\\mathbb{N}^{-})$ for shift-invariant spaces using Toeplitz operators. Using this characterization, we determine all $\\alpha$ for which the sample set $\\mathbb{N}_0\\cup\\alpha+\\mathbb{N}^{-}$ forms a complete interpolation set for transversal-invariant spaces. We introduce a new recurrence relation for exponential splines, examines the zeros of these splines, and explores the zero-free region of the doubly infinite Lerch zeta function. Consequently, we demonstrate that $\\left\\langle\\frac{m}{2}\\right\\rangle+\\mathbb{N}_0\\cup\\alpha+\\left\\langle\\frac{m}{2}\\right\\rangle+\\mathbb{N}^{-}$ is a complete interpolation set for a shift-invariant spline space of order $m\\geq 2$ if and only if $|\\alpha|<1/2$.", "revisions": [ { "version": "v1", "updated": "2024-08-17T05:00:43.000Z" } ], "analyses": { "keywords": [ "irregular complete interpolation sets", "shift-invariant spaces", "construction", "doubly infinite lerch zeta function", "complete interpolation property" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }