arXiv:2408.08366 [math.FA]AbstractReferencesReviewsResources
The Operator Norm of Paraproducts on Bi-parameter Hardy spaces
Published 2024-08-15Version 1
It is shown that for all positive values of $p$, $q$, and $r$ with $\frac{1}{q} = \frac{1}{p} + \frac{1}{r}$, the operator norm of the dyadic paraproduct of the form \[ \pi_g(f) := \sum_{R \in \Dtwo} g_R \avr{f}{R} h_R, \] from the bi-parameter dyadic Hardy space $\dyprodhp$ to $\dotdyprodhq$ is comparable to $\dotdyprodhrn{g}$. We also prove that for all $0 < p < \infty$, there holds \[ \dyprodbmon{g} \simeq \|\pi_g\|_{\dyprodhp \to \dotdyprodhp}. \] Similar results are obtained for bi-parameter Fourier paraproducts of the same form.
Categories: math.FA
Related articles: Most relevant | Search more
The Operator Norm of Paraproducts on Hardy Spaces
arXiv:1805.03129 [math.FA] (Published 2018-05-08)
Selberg-type integrals and the variance conjecture for the operator norm
arXiv:1802.05994 [math.FA] (Published 2018-02-16)
Dimension dependence of factorization problems: bi-parameter Hardy spaces