arXiv Analytics

Sign in

arXiv:1802.05994 [math.FA]AbstractReferencesReviewsResources

Dimension dependence of factorization problems: bi-parameter Hardy spaces

Richard Lechner

Published 2018-02-16Version 1

Given $1 \leq p,q < \infty$ and $n\in\mathbb{N}_0$, let $H_n^p(H_n^q)$ denote the canonical finite-dimensional bi-parameter dyadic Hardy space. Let $(V_n : n\in\mathbb{N}_0)$ denote either $\bigl(H_n^p(H_n^q) : n\in\mathbb{N}_0\bigr)$ or $\bigl( (H_n^p(H_n^q))^* : n\in\mathbb{N}_0\bigr)$. We show that the identity operator on $V_n$ factors through any operator $T : V_N\to V_N$ which has large diagonal with respect to the Haar system, where $N$ depends \emph{linearly} on $n$.

Related articles: Most relevant | Search more
arXiv:1802.02857 [math.FA] (Published 2018-02-08)
Dimension dependence of factorization problems: Hardy spaces and $SL_n^\infty$
arXiv:2407.05187 [math.FA] (Published 2024-07-06)
Dimension dependence of factorization problems: Haar system Hardy spaces
arXiv:2408.08366 [math.FA] (Published 2024-08-15)
The Operator Norm of Paraproducts on Bi-parameter Hardy spaces