{ "id": "1802.05994", "version": "v1", "published": "2018-02-16T15:55:06.000Z", "updated": "2018-02-16T15:55:06.000Z", "title": "Dimension dependence of factorization problems: bi-parameter Hardy spaces", "authors": [ "Richard Lechner" ], "comment": "41 pages", "categories": [ "math.FA" ], "abstract": "Given $1 \\leq p,q < \\infty$ and $n\\in\\mathbb{N}_0$, let $H_n^p(H_n^q)$ denote the canonical finite-dimensional bi-parameter dyadic Hardy space. Let $(V_n : n\\in\\mathbb{N}_0)$ denote either $\\bigl(H_n^p(H_n^q) : n\\in\\mathbb{N}_0\\bigr)$ or $\\bigl( (H_n^p(H_n^q))^* : n\\in\\mathbb{N}_0\\bigr)$. We show that the identity operator on $V_n$ factors through any operator $T : V_N\\to V_N$ which has large diagonal with respect to the Haar system, where $N$ depends \\emph{linearly} on $n$.", "revisions": [ { "version": "v1", "updated": "2018-02-16T15:55:06.000Z" } ], "analyses": { "subjects": [ "46B07", "30H10", "46B25", "60G46" ], "keywords": [ "bi-parameter hardy spaces", "dimension dependence", "factorization problems", "finite-dimensional bi-parameter dyadic hardy space", "canonical finite-dimensional bi-parameter dyadic hardy" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }