{ "id": "2408.08366", "version": "v1", "published": "2024-08-15T18:18:55.000Z", "updated": "2024-08-15T18:18:55.000Z", "title": "The Operator Norm of Paraproducts on Bi-parameter Hardy spaces", "authors": [ "Shahaboddin Shaabani" ], "categories": [ "math.FA" ], "abstract": "It is shown that for all positive values of $p$, $q$, and $r$ with $\\frac{1}{q} = \\frac{1}{p} + \\frac{1}{r}$, the operator norm of the dyadic paraproduct of the form \\[ \\pi_g(f) := \\sum_{R \\in \\Dtwo} g_R \\avr{f}{R} h_R, \\] from the bi-parameter dyadic Hardy space $\\dyprodhp$ to $\\dotdyprodhq$ is comparable to $\\dotdyprodhrn{g}$. We also prove that for all $0 < p < \\infty$, there holds \\[ \\dyprodbmon{g} \\simeq \\|\\pi_g\\|_{\\dyprodhp \\to \\dotdyprodhp}. \\] Similar results are obtained for bi-parameter Fourier paraproducts of the same form.", "revisions": [ { "version": "v1", "updated": "2024-08-15T18:18:55.000Z" } ], "analyses": { "keywords": [ "bi-parameter hardy spaces", "operator norm", "bi-parameter dyadic hardy space", "bi-parameter fourier paraproducts", "dyadic paraproduct" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }