arXiv Analytics

Sign in

arXiv:2403.15795 [math.NT]AbstractReferencesReviewsResources

Special values of $L$-functions for $\mathrm{GL}_5 \times \mathrm{GL}_4$

Ankit Rai, Gunja Sachdeva

Published 2024-03-23Version 1

Let $\Pi$ be a cuspidal automorphic representation of $\mathrm{GL}_5(\mathbb{A}_\mathbb{Q})$, and let $\Sigma = \mathrm{Ind}(\pi, \chi_2|\cdot|^{1/2}, \chi_3|\cdot|^{-1/2})$ be an automorphic representation of $\mathrm{GL}_4(\mathbb{A}_\mathbb{Q})$ induced from the standard parabolic subgroup of the form $(2, 1, 1)$ where $\pi$ is a cuspidal automorphic representation of $\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})$. Assume that $\Pi_{\infty}$ and $\Sigma_{\infty}$ are cohomological with respect to the trivial representation in which case $s=1/2$ is a critical point for the Rankin-Selberg $L$-function $L(s, \Pi \times \Sigma)$. Following Mahnkopf, we prove a result about $L(\tfrac{1}{2}, \Pi \times \Sigma)$, and as a corollary, obtain an algebraicity result for the ratio $L(1, \Pi \times \chi)/L(1, \Pi \times \chi')$, where $\chi,\chi'$ are finite order Hecke characters such that $\chi_{\infty} = \chi'_{\infty} = \mathrm{sgn}$.

Related articles: Most relevant | Search more
arXiv:2403.18154 [math.NT] (Published 2024-03-26)
Cohomology classes, periods, and special values of Rankin-Selberg $L$-functions
arXiv:math/0405164 [math.NT] (Published 2004-05-10, updated 2005-03-23)
Arithmetic cohomology over finite fields and special values of zeta-functions
arXiv:2007.07765 [math.NT] (Published 2020-07-15)
On a problem of Hoffstein and Kontorovich