arXiv Analytics

Sign in

arXiv:2403.18154 [math.NT]AbstractReferencesReviewsResources

Cohomology classes, periods, and special values of Rankin-Selberg $L$-functions

Yubo Jin, Pan Yan

Published 2024-03-26Version 1

In this article, we give a cohomological interpretation of (a special case of) the integrals constructed by the second named author and Q. Zhang \cite{YanZhang2023} which represent the product of Rankin-Selberg $L$-functions of $\mathrm{GL}_n\times\mathrm{GL}_m$ and $\mathrm{GL}_n\times\mathrm{GL}_{n-m-1}$ for $m<n$. As an application, we prove an algebraicity result for the special values of certain $L$-functions. This work is a generalization of the algebraicity result of Raghuram for $\mathrm{GL}_n\times\mathrm{GL}_{n-1}$ \cite{Raghuram2010} in the special case $m=n-1$, and the results of Mahnkopf \cite{Mahnkopf1998, Mahnkopf2005} in the special case $m=n-2$.

Related articles: Most relevant | Search more
arXiv:1608.07527 [math.NT] (Published 2016-08-26)
Period relations and special values of Rankin-Selberg $L$-functions
arXiv:2403.15795 [math.NT] (Published 2024-03-23)
Special values of $L$-functions for $\mathrm{GL}_5 \times \mathrm{GL}_4$
arXiv:1001.4170 [math.NT] (Published 2010-01-23)
The sum of digits of $n$ and $n^2$