{ "id": "2403.15795", "version": "v1", "published": "2024-03-23T10:51:18.000Z", "updated": "2024-03-23T10:51:18.000Z", "title": "Special values of $L$-functions for $\\mathrm{GL}_5 \\times \\mathrm{GL}_4$", "authors": [ "Ankit Rai", "Gunja Sachdeva" ], "categories": [ "math.NT" ], "abstract": "Let $\\Pi$ be a cuspidal automorphic representation of $\\mathrm{GL}_5(\\mathbb{A}_\\mathbb{Q})$, and let $\\Sigma = \\mathrm{Ind}(\\pi, \\chi_2|\\cdot|^{1/2}, \\chi_3|\\cdot|^{-1/2})$ be an automorphic representation of $\\mathrm{GL}_4(\\mathbb{A}_\\mathbb{Q})$ induced from the standard parabolic subgroup of the form $(2, 1, 1)$ where $\\pi$ is a cuspidal automorphic representation of $\\mathrm{GL}_2(\\mathbb{A}_\\mathbb{Q})$. Assume that $\\Pi_{\\infty}$ and $\\Sigma_{\\infty}$ are cohomological with respect to the trivial representation in which case $s=1/2$ is a critical point for the Rankin-Selberg $L$-function $L(s, \\Pi \\times \\Sigma)$. Following Mahnkopf, we prove a result about $L(\\tfrac{1}{2}, \\Pi \\times \\Sigma)$, and as a corollary, obtain an algebraicity result for the ratio $L(1, \\Pi \\times \\chi)/L(1, \\Pi \\times \\chi')$, where $\\chi,\\chi'$ are finite order Hecke characters such that $\\chi_{\\infty} = \\chi'_{\\infty} = \\mathrm{sgn}$.", "revisions": [ { "version": "v1", "updated": "2024-03-23T10:51:18.000Z" } ], "analyses": { "keywords": [ "special values", "cuspidal automorphic representation", "finite order hecke characters", "standard parabolic subgroup", "algebraicity result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }