arXiv:2403.04101 [math.CO]AbstractReferencesReviewsResources
Schur positivity of difference of products of derived Schur polynomials
Published 2024-03-06Version 1
To any Schur polynomial $s_{\lambda}$ one can associated its derived polynomials $s_{\lambda}{(i)}$ $i=0,\ldots,|\lambda|$ by the rule $$s_{\lambda}(x_1+t,\ldots,x_n+t) = \sum_i s_{\lambda}^{(i)}(x_1,\ldots,x_n) t^i.$$ We conjecture that $$(s_{\lambda}^{(i)})^2 - s_{\lambda}^{(i-1)} s_{\lambda}^{(i+1)}$$ is always Schur positive and prove this when $i=1$ for rectangles $\lambda = (k^\ell)$, for hooks $\lambda = (k, 1^{\ell -1})$, and when $\lambda = (k,k,1)$ or $\lambda = (3,2^{k-1})$.
Related articles: Most relevant | Search more
arXiv:2006.14415 [math.CO] (Published 2020-06-25)
A counterexample to a conjecture on Schur positivity of chromatic symmetric functions of trees
Schur positivity and Schur log-concavity
arXiv:1804.03701 [math.CO] (Published 2018-04-10)
Catalan functions and $k$-Schur positivity