arXiv:1804.03701 [math.CO]AbstractReferencesReviewsResources
Catalan functions and $k$-Schur positivity
Jonah Blasiak, Jennifer Morse, Anna Pun, Daniel Summers
Published 2018-04-10Version 1
We prove that graded $k$-Schur functions are $G$-equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded $k$-Schur functions and resolve the Schur positivity and $k$-branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux.
Comments: 43 pages, 2 figures
Related articles: Most relevant | Search more
arXiv:1811.02490 [math.CO] (Published 2018-11-06)
$k$-Schur expansions of Catalan functions
arXiv:2007.04952 [math.CO] (Published 2020-07-09)
Demazure crystals and the Schur positivity of Catalan functions
Schur positivity and Schur log-concavity