{ "id": "2403.04101", "version": "v1", "published": "2024-03-06T23:10:51.000Z", "updated": "2024-03-06T23:10:51.000Z", "title": "Schur positivity of difference of products of derived Schur polynomials", "authors": [ "Julius Ross", "Kuang-Yu Wu" ], "comment": "20 pages, 18 figures", "categories": [ "math.CO" ], "abstract": "To any Schur polynomial $s_{\\lambda}$ one can associated its derived polynomials $s_{\\lambda}{(i)}$ $i=0,\\ldots,|\\lambda|$ by the rule $$s_{\\lambda}(x_1+t,\\ldots,x_n+t) = \\sum_i s_{\\lambda}^{(i)}(x_1,\\ldots,x_n) t^i.$$ We conjecture that $$(s_{\\lambda}^{(i)})^2 - s_{\\lambda}^{(i-1)} s_{\\lambda}^{(i+1)}$$ is always Schur positive and prove this when $i=1$ for rectangles $\\lambda = (k^\\ell)$, for hooks $\\lambda = (k, 1^{\\ell -1})$, and when $\\lambda = (k,k,1)$ or $\\lambda = (3,2^{k-1})$.", "revisions": [ { "version": "v1", "updated": "2024-03-06T23:10:51.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "derived schur polynomials", "schur positivity", "difference" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }