arXiv Analytics

Sign in

arXiv:2402.09787 [math.FA]AbstractReferencesReviewsResources

Critical exponents of the Riesz projection

Ole Fredrik Brevig, Adrián Llinares, Kristian Seip

Published 2024-02-15Version 1

Let $\mathfrak{p}_d(q)$ denote the critical exponent of the Riesz projection from $L^q(\mathbb{T}^d)$ to the Hardy space $H^p(\mathbb{T}^d)$, where $\mathbb{T}$ is the unit circle. We present the state-of-the-art on the conjecture that $\mathfrak{p}_1(q) = 4(1-1/q)$ for $1 \leq q \leq \infty$ and prove that it holds in the endpoint case $q = 1$. We then extend the conjecture to \[\mathfrak{p}_d(q) = 2+\cfrac{2}{d+\cfrac{2}{q-2}}\] for $d\geq1$ and $\frac{2d}{d+1} \leq q \leq \infty$ and establish that if the conjecture holds for $d=1$, then it also holds for $d=2$. When $d=2$, we verify that the conjecture holds in the endpoint case $q = 4/3$.

Related articles: Most relevant | Search more
arXiv:1005.1842 [math.FA] (Published 2010-05-11)
$L^\infty$ to $L^p$ constants for Riesz projections
arXiv:1305.0226 [math.FA] (Published 2013-05-01)
Hardy's type inequality for the over critical exponent associated with the Dunkl transform
arXiv:math/0207142 [math.FA] (Published 2002-07-17)
Non-MSF wavelets for the Hardy space H^2(\R)