{ "id": "2402.09787", "version": "v1", "published": "2024-02-15T08:35:35.000Z", "updated": "2024-02-15T08:35:35.000Z", "title": "Critical exponents of the Riesz projection", "authors": [ "Ole Fredrik Brevig", "Adrián Llinares", "Kristian Seip" ], "doi": "10.1007/s40315-024-00566-z", "categories": [ "math.FA" ], "abstract": "Let $\\mathfrak{p}_d(q)$ denote the critical exponent of the Riesz projection from $L^q(\\mathbb{T}^d)$ to the Hardy space $H^p(\\mathbb{T}^d)$, where $\\mathbb{T}$ is the unit circle. We present the state-of-the-art on the conjecture that $\\mathfrak{p}_1(q) = 4(1-1/q)$ for $1 \\leq q \\leq \\infty$ and prove that it holds in the endpoint case $q = 1$. We then extend the conjecture to \\[\\mathfrak{p}_d(q) = 2+\\cfrac{2}{d+\\cfrac{2}{q-2}}\\] for $d\\geq1$ and $\\frac{2d}{d+1} \\leq q \\leq \\infty$ and establish that if the conjecture holds for $d=1$, then it also holds for $d=2$. When $d=2$, we verify that the conjecture holds in the endpoint case $q = 4/3$.", "revisions": [ { "version": "v1", "updated": "2024-02-15T08:35:35.000Z" } ], "analyses": { "keywords": [ "riesz projection", "critical exponent", "conjecture holds", "endpoint case", "hardy space" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }